初中数学的增根是什么(分式方程增根与无解)

终滢融
精选回答

张老师学数学就是玩,今天来看分式方程先来了解一下容易造成大家困扰的两个概念什么叫做分式方程有增根,什么叫分式方程无解啊?很多同学拿到这两个概念想当然呢就划等号那它俩之间到底有什么样的联系和区别?

初中数学的增根是什么(分式方程增根与无解)

咱们通过这个题一块儿来分析分析啊关于X的方程X减一分之AX加一减去一减X分之二等于一问你第一问若方程有增根,让你求a等于多少?第二问若方程无解,让你求a等于多少?什么叫有增根?书上是不是有定义啊?什么叫有增根?有增根是不是说明关于X的这个分式方程要使它的分母为零的X的取值是不是这个方程的增根对不对?那拿这个题来看,X减一一减X分母为零,X等于几?是不是很显然X等于一呀?所以X等于一是不是就是这个方程的什么增根对不对?那当X等于一的时候,a等于多少?那咱们求一下是不是就出来了?好,这是第一个问,来咱们解一下解。X减一减X,我们把一减X整体变号,把这个减号变成加号,来X减一分之AX加一这里边变成加X减2/1等于一等式,两边同时乘以X减一,把分母消掉,来AX加一加二等于X减一。把X移过去,X移过去把X提出来,是不是a减一倍的X。等于,这是三移过去是不是负四啊?所以X等于多少?X等于a减一分之负四,咱们刚才说了什么时候有增根?分母为零的时候有增根,分母为0X等于几?X等于一的时候是不是有增根啊?有增根,那它有增根是不是说明了a减一分之负四也要等于一那a减出来a等于几?a等于负三。所以第一问方程有增根,也就是说X等于一的时候,这个方程有增根,X等于一的时候,a等于几呀,a解出来等于负三。是吧,第一问就出来了,问你第二问,那他为啥问你第二问肯定第二问跟第一问答案不一样,他如果一样的话,他还问你干嘛,对不对?

第二问人家说无解,咱们是不是先要分析一下这个无解什么情况无解,第一种情况肯定是有增根的时候无解,你有增根的时候,你原方程分母都是零了,你这个方程还有意义吗?是不是没有意义,那没有意义它怎么可能有解呢?是不是有增根肯定是无解的一种形式,对不对?那还有没有其他的形式可以让整个的这个分式方程无解啊?那咱们来看一下这个方程我们化简化简化简,然后我们做到这儿,比如我们做到这,做到这a减一乘以X等于负四。什么时候无解,我让这个方程不成立是不是可以啊?来第二种是不是我我让方程不成立,就什么时候不成立,来这个a减一,我让它等于零可不可以。也就是说a等于一的时候,a等于一的时候说明什么?说明这个原方程变成了一个什么形式,是不是零乘以X等于负四啊?零乘以任何数都应该等于零,他们怎么可能等于一个不为零的数呢?所以这个方程是不是无论如何X取什么值,它是不是都不成立呀?那这个方程既然不成立,不就说明这个方程无解吗?对不对?

所以说咱们总结一下什么时候无解?第一问有增根,有增根肯定无解,第二种情况咱们还要从这个方程本身来分析,我让它变成一个不成立的形式,那这个方程是不是也是无解,什么时候不成立?最常见的状况是不是零乘以一个数等于一个不为零的数,那我零乘以X等于一个不为零的数,我X无论取什么数,它是不是都不成立,所以一定要搞清楚增根和无解之间它是有联系和区别的无解的这个范围是要比有增根的这个范围要大的所以这种类型的题是分式方程里边非常常见的一类题型它们之间的联系和区别,大家课后还要再认真的总结一下好,今天咱们就讲到这儿赵老师学数学就是玩下课。

战老师开课了 2023-06-06 16:00:08

相关推荐

初中数学的增根无解是什么

增根与无解,区别在这。关于分式方程无解的问题分为两种。第一种,使分式方程有增根那么什么是分式方程的增根呢?那么首先我们在解分式方程的时候首先我们要给它转化成整式方程,那么在解这个整式方程的时候,得出来的解会使原分式方程的分母为零,这样的解我们就叫做原分式方程的增根。第二种,解整式方程无解那么什么时候整式方程无解呀?就是给它化简成整式方程的时候,使它的未知数的系数为零。那么我们看一下这道题,关于X方
展开详情

初中数学的增根是什么(增根难题学会方法一招解决)

分式这一块有三大题型是考试一定要考的,而且是考试中的压轴题,拉分题。那么我们来看一道增根的问题来,这道题就是一道考试真题,关于X的这个方程有增根,则K的值是多少?什么是增根呢?增根是把分式方程变成整式方程的那个根,并且让这个分式方程没意义,也就是分母为零,那你说这个分式方程的它增根就是谁呀?是X等于几?是不是X等于三呢?但X等于三时分母为零是不是就没意义?好了,那么增根式X等于三。现在我们要干的事
展开详情

初中数学是什么思维(初中数学思维)

初中学习和小学学习的一个巨大的区别就是数学思维的不同有一些啊朋友留言就来质疑我或者说是找我对质那什么是数学思维这个词儿太宏观是吧,说出来那太抽象,我们都不知道那是什么东西。我说一下我自己的理解这个数学思维让我的理解就是举一反三的能力就是你学了这个知识点那么跟它相关的很多问题,你也能够主动的去寻找它的处理方式,这就是数学思维包括一个没处理问题的这个条理性,逻辑性,这都是数学思维的一部分,那么什么没数
展开详情

初中数学中的角度是什么

今天咱们来看图形里面有关角度计算来看题,已知角BOC是90度,角AOB是40度,OB平分角AOC,那我们求角BOD,就是求这个角好。这道题咱们用两种方法来讲,先给它题里面告诉两个已知角和一个角平分线,那要求角BOD,我首先在图中找到这两个已知角,我压住OD,那角BOC是90度,角AOB是40度,根据这两个已知条件,我就求出角AOC应该等于90度加40度等于130度,AOC是130度,OD又是角AO
展开详情

初中数学中的角度是什么(初中数学角的概念)

这个文章咱来讲讲角,别乱想了,这可不是生物课,我要讲的是这个角。角在生活中很常见,比如这个,再比如这个。在几何中,角有自己的定义,而且还有两个。第一个定义是描述性的,有公共端点的,两条射线所围成的图形叫做角。公共端点是角的顶点,射线就是角的边。第二个定义是动态的,一条射线绕端点转动所形成的图形就是角,射线端点即角的顶点,射线出发的位置叫始边,停止的位置角终边。你要注意,两种定义都强调了角的两边为射
展开详情

八年级最难数学题有哪些(初二分式的无解问题)

分式方程这有三大难点其中一个就是我们马上要讲的无解问题,还有增的问题,在上一个文章讲过,还有就是分式方程中的应用题。来我们看这个无解问题,它比增的问题还要难,很多同学考试都得不了分,好说关于X的这个方程无解。然后问M的值以后,记住只要遇到无解问题,就是两种情况,一种情况就是它的根是增根,那它也无解,那还有一种情况来下面我们来讨论,首先这个记住这是一个分式方程,我们所有的分式方程第一步都是化成整式方
展开详情

高中化学熵增图像怎么看(熵值的变化熵增定律)

我们一起来看这道题。在一定温度下,下列反应中,熵值变化由大到小的排序。那这里涉及到一个知识点,就是熵变值。那么什么是熵呢?我们一起来回顾。熵是用来表示一个体系混乱度的物理量,我们协商一下熵它表示的是一个混乱度。那么怎么用混乱度来看熵值呢?对于气体而言,我们主要比的是物质的量,那么写上下有气体参加的反应。比的是前后气体物质的量的变化值can。前后气七体物质的量的变化值。也就是德尔塔N。那么接下来我们
展开详情

数学初中是什么样子的(初中数学三个阶段,初一到初三内容详解)

初中数学三个阶段初一:计算和应用题初一阶段共有八个章节,其中除了少量几何知识的介绍外,其他内容均为计算。初一上学期学习有理数的加减乘除,乘方整式的加减,还有一元一次方程。下学期将学习二元一次方程,一次不等式和不等式组,以及实数平方根和立方根等。由于这些内容都是计算为主的,因此计算能力非常重要,并且每天都要进行练习。此外,方程和不等式等内容还会融入到应用题中,因此应用题也是非常重要的一部分。很多学生
展开详情

数学初中是什么样子的(初中数学VS高中数学:天壤之别!如何迅速适应高中数学?)

初中数学与高中数学的区别初中数学和高中数学之间存在着天壤之别。初中数学相对简单,可以类比成从A到B的过程,只需要基本的逻辑思维。然而,高中数学则更加复杂,有点类似于从A到E的过程,需要依次经过多个步骤,如A到B,再到C,再到B,最后才能到达E。这只是表面的区别,实际上两者之间的差异更为显著。初中数学的特点在初中阶段,数学教育往往偏重于记忆和刷题,而较轻视深刻理解。由于初中数学知识点相对较少,题目类
展开详情

高中化学熵增图像怎么看

跟陈老师学化学,高考化学并不难。今天我们来看一道例题。在相同的温度和压强下,下列关于物质熵的大小排序正确的是。熵,指的是一个物质的混乱程度。当物质相同,物质的物质的量也相同时,他们的状态不同,会导致熵的不同。固态的熵会小于液态的熵,会小于气态的熵,所以a选项应该填大于号。B选项是两个状态相同,都是气态的物质,那么物质的量的不同会引起他们熵的不同。当物质的量越大,熵就越大,所以B选项也应该是大于号。
展开详情

初中数学是什么思维(函数与方程的思想是初中阶段必须要掌握的数学思维)

来,今天这道题目很多同学拿到以后马上就懵了,一个方程,俩未知量,还让我们求最大值,到底该怎么办?这种代数最值的问题,第一层思想一定是函数与方程的思想,虽然只有一个方程,但是我们可以通过这个方程把M用N表达出来,那么此时通过一项之后,M就等于N减9/8N减六,当然N是不能等于八的,写成这个形态之后,相当于我们把N看成了自变量,而把M看成关于N的函数,接下来只需要求这个函数的最大值就OK了,那么接下来
展开详情

初中数学中平铺是什么(平移法求平铺图的周长)

小解平铺图下图是一面砖墙的平面图,每块砖长20厘米,高铁积宽为八厘米,像图中那样一层、两层,三层,四层、五层,点点点一直摆了十层,求摆好后这十层砖墙的周长是多少?首先呀,要求摆好这十层,我们要把它画出来,实在太大了,所以在这里林老师给大家画了一个五层的平铺图,来去分析一下,拿到手的是一个不规则图形,直接去求它的周长,无法求解,因为我们没有这个楼梯图形的周长公式,怎么办呢?就想化了我们的平移大法,我
展开详情

最新问题

如何学会听课的时候抓重点(捕捉关键信息的建议)

学会在听课时抓重点是提高学习效率的重要技能。以下是一些实用的方法,帮助你在听课时更有效地捕捉关键信息:1.了解课程结构查看课程大纲:在上课前,了解课程的整体结构和主要主题,以便在听课时能够识别出重点内容。明确学习目标:了解每节课的学习目标,有助于你集中注意力在关键知识点上。2.做好准备工作预习教材:在上课前阅读相关内容,标记出重要概念和不理解的部分,帮助你在课堂上更快抓住重点。列出问题:提前列出你

如何学会带着问题去听课(带着问题去听课的方法)

带着问题去听课是一种非常有效的学习策略,可以帮助你更深入地理解课堂内容并激发思考。以下是一些方法,帮助你学会带着问题去听课:1.提前了解课程内容查看课程大纲:了解即将学习的主题和章节,掌握课程的整体框架。预习教材:提前阅读相关教材,标记出不理解或感兴趣的部分,这样可以在课堂上有针对性地提问。2.列出问题根据预习内容:在预习时,记录下你不理解的概念、公式或例子,形成问题清单。思考关联:考虑这些新知识

孩子胆小不自信怎么办(建立自信心的方法)

孩子的胆小和不自信是常见的心理特征,但家长和教育者可以通过多种方式帮助他们建立自信心。以下是一些有效的方法:提供安全感:确保孩子在家庭和学校环境中感到安全和被支持。积极的情感支持能帮助他们建立自信。鼓励表达情感:鼓励孩子表达自己的感受和想法,倾听他们的担忧与恐惧,帮助他们理解自己的情绪。设定小目标:帮助孩子设定小而可实现的目标,逐步挑战自己的舒适区。每完成一个小目标都会增强他们的自信心。积极的反馈

如何提高行动力(孩子增强行动力的技巧)

提高行动力是实现目标和提升效率的重要因素。以下是一些有效的方法,可以帮助你或你的孩子增强行动力:明确目标:制定具体、可衡量的短期和长期目标。明确的目标能够提供方向感,激励行动。分解任务:将大目标分解为小任务,逐一完成。这样可以减少压力,让行动变得更加可行和容易启动。制定计划:制定详细的计划,列出每个小任务的完成时间和步骤。计划有助于组织思路,明确行动的优先级。设定截止日期:给每个任务设定明确的截止

怎样提高抗压能力(增强抗压能力的建议)

提高抗压能力对于应对生活和工作中的各种挑战至关重要。以下是一些有效的方法,帮助您增强抗压能力:认识压力源:了解自己面临的压力源,识别出哪些因素会导致压力,帮助您更好地应对和管理这些压力。培养积极心态:练习乐观思维,积极的方面,保持正面情绪。可以通过积极自我对话、感恩日记等方式来培养积极心态。建立有效的时间管理:制定合理的日程安排,优先处理重要和紧急的任务,避免时间管理不当带来的额外压力。锻炼身体:

怎样掌握学习逻辑(掌握学习逻辑的技巧)

掌握学习逻辑是提高学习效率和理解能力的重要环节。以下是一些有效的方法和策略,帮助您或您的孩子更好地理解和掌握学习逻辑:理解基本概念:在开始学习之前,确保理解相关的基本概念和术语。清楚的基础知识是建立逻辑思维的前提。建立知识框架:将所学内容整理成结构化的框架,比如思维导图或概念图,帮助理清知识之间的关系,形成系统的知识网络。进行归纳与演绎:学会使用归纳法(从具体案例推导出一般规律)和演绎法(从一般规

怎么掌握时间概念(掌握时间概念的策略)

掌握时间概念对于个人的生活、学习和工作都是非常重要的。以下是一些有效的方法,帮助您或您的孩子更好地理解和掌握时间概念:使用时间工具:教孩子使用钟表和日历,帮助他们了解时间的基本单位(小时、分钟、秒)以及日期和星期的概念。分解时间单位:解释时间的不同单位,如秒、分钟、小时、天、周、月和年,帮助他们理解这些单位之间的关系。建立日常时间表:制定一个日常时间表,帮助孩子了解每天的活动安排。可以使用图表或日

如何调整心态面对挑战(面对挑战保持心态的建议)

面对挑战时,调整心态是非常重要的。以下是一些有效的方法,帮助您在面对挑战时保持积极的心态:积极自我对话:注意自己的内心对话,避免消极的自我批评。用积极的语言来鼓励自己,例如“我可以做到”或“这是一个成长的机会”。接受挑战:将挑战视为学习和成长的机会,而不是负担。接受挑战是个人发展的重要部分,能够帮助您提升技能和能力。设定合理目标:将挑战分解为小目标,

如何提高口算能力(提高口算能力的方法)

提高口算能力是一个需要时间和练习的过程。以下是一些有效的方法和技巧,可以帮助您或您的孩子提高口算能力:基础知识扎实:确保对基础的加减乘除运算有清晰的理解和掌握。熟悉数字的组合和运算规则是口算的基础。使用数学游戏:通过数学游戏或应用程序来增加趣味性,比如数独、数学拼图等,这些都能锻炼口算能力。定期练习:每天抽出时间进行口算练习,逐渐增加难度。可以使用练习册、在线资源或手机应用。分解数字:学习将复杂的

如何去掉自我中心症(减少自我中心倾向的建议)

去掉自我中心症(或自我中心倾向)是一种自我提升的过程,可以帮助我们更好地理解他人、建立良好的人际关系以及提升生活的整体满意度。以下是一些有效的方法和策略,可以帮助你减少自我中心的倾向:增强自我意识:定期反思自己的行为和想法,了解自己在与他人互动时的态度。可以通过写日记、冥想或自我评估来增加自我意识。倾听他人:在与他人交流时,主动倾听,他们的感受和需求。避免打断或只自己的观点,努力理解他人的立场。培
问答大全
B
C
G
H
R
S
W
X
Y
Z